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UNIT - I 
BOUNDED SETS 

Definition : 

  A subset A of R is said to be bounded above if there exists an element α ϵ R such 
that   

 

α is called an upper bound of A. 

Definition :  

A subset A of R is said to be bounded below if there exists an element β ϵ R such that 
.    

 
 

β is called a lower bound of A. 

Definition : 

 A is said to be bounded  if it is both bounded above and bounded below. 

 
Least Upper Bound and Greatest Lower Bound: 

Definition : 

 Let A  be a subset of R and     u is called the least upper bound or supremum 
of A if  i)   u is an upper bound of A. 

              ii)   then v is not an upper bound of A. 

 

Definition : 

Let A be a subset of R  and    l ε R.   l  is called the greatest  lower  bound  or  infimum   

of A if   i)  l   is a lower bound of A. 

if  then m is not a lower bound of A. 

 
Examples: 

1. Let A = {1, 3, 5, 6}. Then glb of A = 1 and lub of A = 6 

2. Let A = (0,1). Then glb of A = 0 and lub of A = 1. In this case both glb and lub do not  
belong to A. 

 
Bounded Functions: 

Definition:   

Let  be any function. Then the range of f is a subset of R. f is said to be 
bounded function if its range is a bounded subset of R.  

Remark :  

f is a bounded function iff there exists a real number m such that 
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1. f : [0,1] R given by f(x) = x + 2 is a bounded function where as f : R            R given by 

is not a bounded function. 

2. f :R      R defined by f(x) =sin x is a bounded function. Since  
 
 

Absolute Value: 

Definition: For any real number x we defined the modulus or the absolute value of x 

denoted by |x| as follows  . 

 

 Clearly 

Triangle inequality 

         For arbitrary real x and y we have   І x + y І ≤ І x І + l y l 

Proof:  

We know that  - l x l ≤ x ≤ l x l                       (1) 

 

and       - l y l ≤ y ≤ l y l                        (2) 

    
(1)+(2) =>    - [ l x l + l y l ]  ≤  x + y  ≤  l x l  +  l y l . 

 
By theorem,  “ If a ≥ 0 ,  then we have the inequality  l x l  ≤ a  iff  - a ≤  x  ≤  a “ . 

 

Hence,    І x + y І ≤ І x І + l y l.  
 

Cauchy-schwarz inequality 
 

Theorem:1.1 If  and      are real numbers, then 
 
 

 
Or, equivalently 

………..(1) 
 

……………(2) 
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We will use mathematical induction as a method for the proof. First we observe that 

 

By expanding the square we get 
 

 

After rearranging it further and completing the square on the left-hand side, we get 
 

By taking the square roots of both sides, we reach 
 

…………(3) 

which proves the inequality (2) for n = 2. 

Assume that inequality (2) is true for any n terms. For n + 1, we have that 

=   ……………………….(4) 

By comparing the right-hand side of equation (4) with the right-hand side of 
inequality (3) 

 
we know that 

 

+ 

Since we assume that inequality (2) is true for n terms, we have that 

 

+ + 

 

which proves the C-S inequality. 

Theorem:1.2 

Given real numbers a and b such that   for every   ε > 0 . Then  

Proof: 

Given  ……..(1) 

Suppose 

Choose  

Now,  

 

 

 
 

 
 

6 
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Therefore, , which is a contradiction to (1) 
Hence 

 

Theorem: 1.3 

If n is positive integer which is not a perfect square, then   is irrational. 

Proof: 

Let n contains no square factor > 1 

Suppose   is rational 

Then , where a and b are integers having no factor in common. 

implies 

……(1) 

But b2n is a multiple of n, so a2 is also a multiple of n 

However if  a2 is  a multiple of  n, a itself  must be  a multiple  of n. (since n has no square 
factor >1 ) 

 where c is an integer 

sub in (1) 

 
 

 

Therefore b is a multiple of n, which is a contradiction to a and b have no factor in common. 

Hence  is irrational 

If n has a square factor, then n = m2 k, where k> 1 and k has no square factor > 1. 

Then  

If  is rational, then the numbers   is also 

rational.   Which is a contradiction to k is no square 

factor > 1.   Hence n has no square factor. 

Problem: 

    Prove that    is irrational. 

Theorem: 

  Prove that if e x = 1 + x + x2 /2!  + . . .   + xn / n! + . . .  e  is irrational. 
 
 

 



Page 7 of 49 

 

 

 

 



Page 8 of 49 

 

 

 

 

 

 

 

 



Page 9 of 49 

 

 

UNIT - II 
 SEQUENCES 

Definition.  Let f  :  ℕ → ℝ  be a function and  let f  (n) =  an. Then is called the 
sequences in ℝ determined by the function f and is denoted by (an). 

 

an is called the nth term of the sequence. The range of the function f which is a subset of ℝ, is 
called the range of the sequence 

 
Examples. 
a) The function f : ℕ → ℝ given by determines the sequence 1, 2, 3, …, …,n, 
b) The function f : ℕ→ ℝ given by  determines the sequence 1, 4, 9, …,…,n2,… 

Definition: 
A sequence  is said to be bounded above if there exists a real number k such that 

≤ k for all n ∈ℕ. k is called an upper bound of the sequence  . 
A sequence   is said to be bounded below if there exists a real number k such that  ≥ k 
for all n. k is called a lower bound of the sequence  . 
A sequence   is said to be a bounded sequence if it is both bounded above and below. 

 

Note. 

A sequence is bounded if there exists a real number     such that 
 

Examples. 

1. Consider the sequence 1, 1/2 , 1/3,…. 1/n…. Here 1 is the 𝑙.u.b and 0 is the g.l.b. It is a 
bounded sequence. 

2. The sequence 1, 2, 3,  …….., n,… ..... is bounded below but not bounded above. 1 is the g. 
𝑙.b of the sequence. 
3. The sequence–1,–2,–3,…–n,…is bounded above but not bounded below. 

–1 is the 𝑙.u.b of the sequence. 

4. 1, –1, 1, –1, …. is a bounded sequence. 1 is the l. u. b –1 is the g. l. b of the sequence 
5. Any constant sequence is a bounded sequence. Here 1.u.b = g. l. b = the constant term of 
the sequence. 
Monotonic sequence 

 

Definition: A sequence     is said to be monotonic increasing if  for all n.  
is said to be monotonic decreasing if      ≥  for all n.   is said to be strictly monotonic 
decreasing  if     for all n. is said to be monotonic if it is either monotonic 
increasing or monotonic decreasing. 

 

Example. 
1. 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, …. is a monotonic increasing sequence. 

2. 1,2,3,4… ...... is a strictly monotonic increasing sequence 

3. The  sequence       given by 1, –1, 1, –1, 1, … is neither monotonic increasing nor 

monotonic decreasing. Hence   is not a monotonic sequence. 

4.      is a monotonic increasing sequence. 
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Proof: 

an – an+1 = 

= 

Therefore 
Hence the sequence is monotonic increasing. 

5. Consider the sequence (an) where . Clearly   is a monotonic 

increasing sequence. 

Note: A monotonic increasing sequence    is bounded below and q1 is the g.𝑙.b of the 
sequence. 

A monotonic decreasing sequence  is bounded above and a1 is 𝑙. u. b of the sequence. 

 
Solved Problems: 

Show  that  if    is  a  monotonic  sequence  then  ( ) is also a monotonic 

sequence. 

Solution: 

Let  be a monotonic increasing sequence. 

Therefore                          ……………….(1) 

Let =  ( ) 

Now,   =  –  

=        by (1) 

=  
 

Therefore, . 

Therefore   is monotonic increasing. 

The proof is similar if  is monotonic decreasing. 

 
 

Convergent sequences 

Definition. A sequence  is said to converge to a number 𝑙if given 𝜖> 0 there exists a 
positive 

integer m such that   . We say that is the limit of the sequence 

and we write 

lim𝑛→∞𝑎𝑛  = 𝑙or  →𝑙 
 

Note.1  → 𝑙 iff given 𝜖> 0 there exists a natural number m such that ∈( 𝑙–𝜖, 𝑙 + 𝜖, ) 

for all n ≥ m i.e, All but a finite number of terms of the sequence lie within the interval 
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Let m = max {n1 , n2} 
Then 

+ by (1) and (2) 

Theorem. 2.1 
A sequence cannot converge to two different limits. 

 

Proof. Let (an) be a convergent sequence. 

If possible let 𝑙1 and 𝑙2 be two distinct limits of (an). 

Let 𝜖> 0 be given. 

Since (an) →𝑙1 , there exists a natural number n1 

Such that ................................................................... (1) 

Since → 𝑙2, there exists a natural number n2 

Such that ....................................................................... (2) 
 
 
 
 
 

= 

∴𝑙1 − 𝑙2<𝜖and this is true for every 𝜖> 0. Clearly this is possible only if 𝑙1 − 𝑙2 = 0. 

Hence 𝑙1 = 𝑙2 

 
Examples 

1.  

Proof: 

Let ε>0 be given. 

Then  .Hence if we choose m to any natural number 

such that m  then   for all n 

 

          

Note.  If  , then m can be chosen to be any natural number greater 
than100.In this example the choice of m depends on the given 𝜖and [ 1/ 𝜖] + 1 is the 
smallest value of m that satisfies the requirements of the definition. 

2. The constant sequence 1, 1, 1, …… converges to 1. 

Proof. 

Let 𝜖> 0 be given 

Let the given sequence be denoted by (an). Then an = 1 for all n. 

n 𝜖 N. 

where m can be chosen to be any natural number. 
∴ 

Note. In this example, the choice of m does not depend on the given 𝜖 

∴│ – 1│=│1 – 1│ = 0 <𝜖 for all 
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Now, let 

 

3.  

Proof. Let 𝜖> 0 be given. 

Now,  

∴ If we choose m to be any natural number greater than 1/ε we have 

for all n ≥ m .Therefore,  

4.  

Proof. 
Let 𝜖> 0 𝑏𝑒𝑔𝑖𝑣𝑒𝑛 

Then        (since2n>n for all n ε N) 

<ε for all n ≥ m where m is any natural number greater than 1/ε 
 

Therefore,  

5. The sequence  is not convergent 

Proof. 

Suppose the sequence  converges to 𝑙 

Then, given 𝜖> 0, there exists a natural number m such that 
 

∴│(–1)m – (–1) m+1 │= │( –1) m – 𝑙+ 𝑙– (–1) m+ 1│ 

≤ │(–1) m –𝑙│ +│( –1) m + 1 – 𝑙│ 

< ε+𝜖 = 2𝜖 
 

But  
 

 

i.e., 1 <𝜖 which is a contradiction since 𝜖> 0 is arbitrary. 
∴ The sequence ( (–1) n) is not convergent. 

 
Theorem:2.2 
Any convergent sequence is a bounded sequence. 

Proof. 

Let  be a convergent sequence. 

Let  

Let 𝜖> 0 be given. Then there exists m 𝜖N such that  
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Then  

∴  is a bounded sequence. 

Note. The converse of the above theorem is not true. For example, the sequence is 
a bounded sequence. However it is not a convergent sequence. 

 
Divergent sequence  

Definition: A sequence is said to diverge to ∞ if given any real number , there 
exists m 𝜖N such that for all n ≥ m. In symbols we write (an) →∞or  

Note.  → ∞ if given any real number k > 0 there exists m 𝜖N such that 𝜖( k, ∞) for all n 
≥ m 

 
Examples 

1.  

Proof: Let k > 0 be any given real number. 

Choose m to be any natural number such that m > k 

Then n > k for all n ≥ m. 
 

 

2. (n2 ) →∞ 

Proof: Let k > 0 be any given real number. 

Choose m to be any natural number such that m > √k 

Then n2> k for all n > m 

∴ ( n2 ) →∞ 

Definition. A sequence  is said to diverge to −∞ if given any real number k < 0 there 

exists 
m 𝜖N such that that < k for all n ≥ m. In symbols we write 

Lim an  = − ∞, or →−∞ 

n→∞ 

Note. → −∞ iff given any real number k < 0, there exists m 𝜖N such that 

A sequence is said to be divergent if either  → ∞ or → −∞ 

Theorem. 2.3 

 → −∞ iff  → −∞ 

Proof. 
Let →∞ 

Let k < 0 be any given real number. Since  → ∞ there exists m 𝜖 N such that  
for all n ≥ m 
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Similarly we can prove that if (− an) →  − ∞ then (an) → ∞. 
 

Theorem. 2.4 

If → ∞ and an ≠ 0 for all n 𝜖N then ( ) → 0. 

Proof. Let Ɛ > 0 be given. 

Since  → ∞, there exists m 𝜖N such that  

∴ <𝜖for all n ≥ m 

<𝜖for all n ≥ m 

Hence  

Note. The converse of the above theorem is not true. For example, consider the sequence 

(an) where 
An = (-1)n /n. Clearly (an) 

Now (1/an) = (n / (-1)n) = -1,2,-3,4,………which neither converges nor diverges to 

∞ or − ∞ 
 

Thus if a sequence (an) →0, then the sequence (1/an) need not converge or diverge. 

Theorem:2.5 

If → 0 and > 0 for all n 𝜖N ,  

Proof. 

Let k > 0 be any given real number. 

Since (an) → 0 there exists m 𝜖N such that │ 

∴ an < 1/k for all n ≥ m ( since an > 0) 

Therefore 1/an> k for all n ≥ m 
Hence  

 

 

Theorem:2.6 

Any sequence  diverging to ∞ is bounded below but not bounded above. 
Proof. 
Let → ∞. Then for any given real number k > 0 there exists m ∈ N such that an > 

k for all n > m… ............ (1) 
 

∴ k is not an upper bound of the sequence (an) 
∴  is not bounded above 

Now let 𝑙= min { a1, a2, ….am,k}. 

From (1) we see that an >𝑙 for all n. 

∴ (an) is bounded below 

 

 



Page 15 of 49 

 

 

 

Theorem:2.7 
Any sequence  diverging to −∞ is bounded above but not bounded below.  
Proof is similar to that of the previous theorem 
Note 1. The converse of the above theorem is not true. For example, the function 

f : ℕ→ℝ defined by 

f(n)=  

Determines the sequence 0,1,0,2,0,3,…………..which is bounded below and not bounded 

above. Also for any real number k > 0, we cannot find a natural number m such that an > k 

for all n >m. 

Hence this sequence does not diverge to∞. 

Similarly f: ℕ→ℝ given by f(n)=  

Determines the sequence 0, −1, 0, −2, 0, ….. which is bounded above and not bounded 
below. However this sequence does not diverge to − ∞. 

 

Oscillating sequence 
Definition:  A sequence  which is neither convergent nor divergent to ∞ or −∞ is said to 
be an 
oscillating sequence. An oscillating sequence which is bounded is said to be finitely 
oscillating. An oscillating sequence which is unbounded is said infinitely oscillating. 

 

Examples. 
1. Consider the sequence ((−1)𝑛). Since this sequence is bounded it cannot to ∞or − ∞ (by 

theorems). Also this sequence is not convergent . Hence ((−1)) is a finitely oscillating 
sequence. 

2. The function f : ℕ → ℝ defined by 

f(n)           determines the sequence 0 , 1 , −1 , 2 , −2 , 3 , ….. The 

range of this sequence is Z. Hence it cannot converge or diverge to ±∞. This sequence is 
infinitely oscillating. 

 

The Algebra of limits 
In this section we prove a few simple theorems for sequences which are very useful in 
calculating limits of sequences. 

 

Theorem: 2.8 
If  → a and   → b then (𝑎𝑛 +   ) → a + b. 

Proof: 

Let 𝜖> 0 be given. 
Now |𝑎𝑛 + 𝑏𝑛 − 𝑎 – 𝑏|= |𝑎𝑛 − 𝑎 + 𝑏𝑛 − 𝑏 |≤ |𝑎𝑛 – 𝑎|+|𝑏𝑛 – 𝑏|…..(1) 
Since → a , there exist a natural number 𝑛1 such that|an-a|<1/2 ε for all n n1………(2) 
Since → b , there exist a natural number 𝑛2 such that |bn-b |<1/2 ε for all n n2………(3) 

Let m = max{𝑛1, 𝑛2} 
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Then  |𝑎𝑛 + 𝑏𝑛 − 𝑎 – 𝑏|< 1/2𝜖+1/2𝜖 = 𝜖 for all n ≥m. (by (1),(2)and (3)) 

∴ (𝑎𝑛 +bn ) → a + b. 
 

Note. Similarly we can prove that (𝑎𝑛 − bn ) → a − b. 
 

Theorem:2.9 
If  → a and k ∈R then (𝑘 an ) → 𝑘 a. 

 
Proof: 
If k = 0, (𝑘𝑎𝑛) is the constant sequence 0, 0, 0, …. And hence the result is trivial. 

Now , let k ≠ 0. 
Then  |k  an −𝑘 a|= |𝑘| | 𝑎𝑛–𝑎|… ............. (1) 
Let 𝜖> 0 be given. 
Since (a ) → a , there exist m ∈N such that 

|an-a|<ε/|k|  for all n ........................... (2) 

∴ |𝑘𝑎𝑛 – 𝑘𝑎|<𝜖 for all n ≥ m (by 1 and 2). 
∴ (kan ) → 𝑘a. 

 
Theorem: 2.10 
If (an) → a and (bn) → b then (𝑎𝑛𝑏𝑛) → ab. 
Proof. 

Let 𝜖> 0 be given. 
Now, |𝑎𝑛𝑏𝑛 − 𝑎𝑏 |= |𝑎𝑛𝑏𝑛 − 𝑎𝑛𝑏 + 𝑎𝑛𝑏 – 𝑎𝑏| 
≤|𝑎𝑛𝑏𝑛 − 𝑎𝑛𝑏|+|𝑎𝑛𝑏 – 𝑎𝑏| 
=|𝑎𝑛||𝑏𝑛– 𝑏|+ |b| | 𝑎𝑛 –a| ...... (1) 
Also, since (𝑎𝑛) →a, (𝑎𝑛) is a bounded sequences. 
∴   There exist a real number k > 0 such that |an|≤ k   for all n. ........................ (2) 
Using (1) and (2) we get 

|𝑎𝑛bn–ab| ≤ k |𝑏𝑛− 𝑏|+ |𝑏|   |𝑎𝑛–𝑎|… ......... (3) 
Now since (an ) → a , there exist a natural number 𝑛1 such that 

|an-a|>ε/2|b| for all n ≥ 𝑛1 .......... (4) 

Since (bn ) → b, there exist a natural number 𝑛2 such that 

|an-a|>ε/2|b| for all n ≥ 𝑛2 ......... (5) 

Let m = max{𝑛1, 𝑛2}. 

Then|𝑎𝑛𝑏𝑛 – 𝑎b|<k (ε/2k) + |b| (ε/2|b|) = ε for all n  (by (3),(4)and(5)) 

Hence (anbn)  

Theorem: 2.11 

If  

Proof: 
Let 𝜖> 0 be given. 

We have |1/an – 1/a|= 

Now, a 
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Since  there exists n1εN such that  

Hence   ……….(2) 

Using (1) and (2) we get 
 

Now since (an) there exists n2εN such that 

………….(4) 

Let m = max {𝑛1, 𝑛2}. 
 

 
 

Therefore (1/an) 
 

 

Corollary: 

Let  → a and   → b where 𝑏𝑛 ≠ 0 for all n and b ≠ 0. 

Then 
 

Proof:  
(since If ) 

(since If (an ) → a and (bn ) → b then (𝑎𝑛𝑏𝑛) → ab) 
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Theorem: 2.12 
If  → a then (|an|) → |a| . 

Proof: 
Let 𝜖> 0 be given 

Now   | |𝑎n| −|a|| ≤ |an− 𝑎| ................ (1) 
Since ( an) → a there exist m∈𝑵 such that |𝑎𝑛 – 𝑎|<𝜖 for all n ≥ m. 
Hence from (1) we get ||𝑎𝑛 |− |𝑎|| <𝜖 for all n ≥ m. 
Hence (|an|) →(a). 

 
Theorem: 2.13 
If  → a and 𝑎𝑛 ≥ 0 for all n then a ≥ 0. 
Proof. 
Suppose a < 0 . Then −a > 0. 
Choose 𝜖 such that 0 <𝜖< −a so that a + 𝜖< 0. 
Now , since (𝑎𝑛 ) → a , there exist m ∈N such that |𝑎𝑛 – 𝑎|<𝜖 for all n ≤ m. 
∴ a−𝜖<𝑎𝑛< a+𝜖 for all n ≤ m. 
Now, since a+𝜖< 0 , we have 𝑎𝑛< 0 for all n ≥ m which is a contradiction since 𝑎𝑛 ≥ 0. 
∴ a ≥ 0. 
Theorem: 2.14 

If   → a , (𝑏𝑛 ) → b and 𝑎𝑛 ≤ 𝑏𝑛 for all n , then a ≤ b. 

Proof. 

Since 𝑎𝑛 ≤ bn, we have 𝑏𝑛 −𝑎𝑛 ≥ 0 for all n. 

Also ( bn  − 𝑎𝑛  )→ 𝑏 – a (since If  → a and   → b then (𝑎𝑛 +   ) → a + b) 
∴𝑏 – a ≥ 0 
∴ b ≥ a. 

Theorem: 2.15 
If  and 𝑎𝑛 ≤ 𝑐𝑛 ≤ 𝑏𝑛 for all n, then (𝑐n ) → 𝑙. 
Proof. 
Let 𝜖> 0 be given. 
Since  → 𝑙 ,there exist 𝑛1∈N such that 𝑙 − 𝜖<𝑎𝑛<𝑙 + 𝜖 for all n ≥ 𝑛1. 
Similarly, there exist 𝑛2∈N such that 𝑙 − 𝜖<𝑏𝑛<𝑙 + 𝜖 for all n ≥ 𝑛2. 
Let m = max {𝑛1, 𝑛2}. 
∴ − 𝜖<𝑎𝑛 ≤ 𝑐𝑛 ≤ 𝑏𝑛<𝑙+ 𝜖 for all n ≥ m. 
∴ − 𝜖<𝑐𝑛<𝑙 + 𝜖 for all n ≥ m. 
∴ |𝑐𝑛 – 𝑙|<𝜖 for all n ≥ m. 
∴ (𝑐𝑛 ) → 𝑙 . 

 
Theorem:2.16 

If → a and  an  ≥ 0 for all n and  𝑎 ≠ 0 , then . 

Proof. 
Since 𝑎𝑛  ≥ 0 for all n, a ≥ 0 (since If  → a and 𝑎𝑛 ≥ 0 for all n then a ≥ 0) 

Now, | |=  

Since ( an) → 𝑎 ≠ 0 , we obtain 𝑎𝑛> a for all n ≥ 𝑛1 
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for all n n1 

………….(1) 

Now, let 𝜖> 0 be given. 
Since (an ) → 𝑎, there exist 𝑛2∈N such that 
|an-𝑎|<𝜖 𝑎 ( 2 + 1)/ 2 for all n ≥ 𝑛2 ………(2) 
Let m = max {𝑛1, 𝑛2}. 
Then | 𝑎𝑛 − 𝑎 |< Ɛ for all n ≥ m (by 1 and 2). 

∴ . 

 
Theorem: 2.17 
If   → ∞ and  → ∞ then  
Proof. 
Let k > 0 be any given real number. 

Since  → ∞, there exists 𝑛1∈N such that 𝑎𝑛> k for all n ≥ 𝑛1. 

Similarly there exists 𝑛2∈N such that 𝑏𝑛> k for all n ≥ 𝑛2. 

Let m = max {𝑛1, 𝑛2}. 
Then 𝑎𝑛 + 𝑏𝑛> k for all n ≥ m. 
∴ (𝑎𝑛 + 𝑏𝑛 ) → ∞. 

 
Theorem: 2.18 
If   → ∞ and   → ∞ then  → ∞. 
Proof. 
Let k > 0 be any given real number. 

Since  → ∞, there exist 𝑛1∈N such that 𝑎𝑛> 𝑘 for all n ≥ 𝑛1. 

Similarly there exists 𝑛2∈N such that 𝑏𝑛> 𝑘 for all n ≥ 𝑛2. 
Let m = max{𝑛1, 𝑛2}. 
Then 𝑎𝑛𝑏𝑛> k for all n ≥ m. 
∴ (𝑎𝑛𝑏𝑛  ) → ∞. 

 

Theorem: 2.19 
 

Let  → ∞ then 
(i)If c >0 , (c 𝑎𝑛 ) → ∞ 
(ii)If c < 0 , (c 𝑎𝑛 ) → −∞ 

Proof. 
(i) Let c > 0. 

Let k > 0 be any given real number. 
Since   → ∞, there exist m ∈𝑵 such that 𝑎𝑛>k/c for all n ≥ m. 
∴ c 𝑎𝑛> k for all n ≥ m. 
∴ (c an ) → ∞. 
(ii) Let c < 0 . 

Let k < 0 be any given real number. Then k/c > 0. 

∴ There exists m ∈N such that 𝑎𝑛> k/c for all n ≥ m. 
∴ c 𝑎𝑛< k for all n ≥ m (since c < 0). 
∴ (can  ) → − ∞. 
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W e k n o w t h a t 

Theorem: 2.20 
If   → ∞ and (bn ) is bounded then (𝑎𝑛 + 𝑏n )→ ∞. 
Proof. 
Since (bn) is bounded, there exists a real number m < 0 such that 𝑏𝑛> m for all n. 
............................................................................................................................................. (1) 
Now, let k > 0 be any real number. 
Since m < 0 , k – m > 0. 

Since ( an) → ∞ , there exists 𝑛0∈N such that 𝑎𝑛> k – m  for all n≥𝑛0 .............................................. (2) 
∴𝑎𝑛 + 𝑏𝑛> k – m + m = k for all n ≥ 𝑛0 (by 1 and 2). 
∴ (𝑎𝑛 + 𝑏𝑛 )→ ∞. 
Solved Problems. 

 
1. Show that 

Solution: 
 
 

 

= 3 + 2 =   3 + 0 + 0 = 3   

 

 

Similarly, 
 
 

= 3/6 

= ½ 
 

2. Show that ) =  

S o l u t i o n : 

 

 
 
 

3 . S h o w t h a t 

S o l u t i o n : 

= 

= 1 / 3 
 

N o w , 
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n 

= 

 
 
 

 
 

 
 

 

= 1 
 

4. Show that if  → 0 and  is bounded, then (𝑎𝑛𝑏n ) → 0. 
Solution. 
Since (bn ) is bounded, there exists k > 0 such that|𝑏𝑛 |≤ k for all n. 
∴ |anbn|≤ k | 𝑎𝑛 |. 
Now, let 𝜖> 0 be given. 

Since (𝑎𝑛) → 0 there exists m ∈N such that |𝑎𝑛|< ε/k for all n m 

∴ |𝑎𝑛𝑏𝑛 |<𝜖 for all n ≥ m. 

∴ (an bn) →0. 

 
5. Show that  

Solution: 
|sin n|≤ 1 for all n. 

∴ (sin𝑛) is a bounded sequences 

Also, (1/n) →0 

∴ →0 (by problem 4). 

 
6. Show that lim(𝑎1/n) = 1 where a > 0 is any real number. 
𝑛→∞ 

Solution. 

Case (i) Let a = 1 . Then 𝑎1/𝑛 =1 for each n . Hence (𝑎1/n) → 1 
 

Case (ii) Let a > 1. Then 𝑎1/𝑛>1. 
Let𝑎1/𝑛=1+hnwherehn> 0. 
Therefore a = (1+ hn)2 
=1+ nhn+…….+h n 
> 1+ nhn 

Therefore, hn< a-1/n 

Therefore, 0<hn< a-1/n 

Hence  
Therefore, (a1/n)=(1+hn) 

 

Case(iii) 

Let 0<a <1 

Then 1/a >1 
Therefore, (1/a)1/n 

= 
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n 

n 

n n 

 
 
 

 

7. Show that lim𝑛 →∞(𝑛)1/n= 1. 
Solution. 

Clearly 𝑛1/𝑛 ≥ 1 for all n. 
Let n1/n =1 +hn where hn 

Then n = (1+hn)n 
= 1 + nhn+ nc2 h 2+………+h n 

= n(n-1)h 2 

Therefore, h 2< 

hn< 

Since and hn (hn) 

Hence (n1/n)=(1+hn) 

 

8. Give an  example to show that if  is a  sequence  diverging to  ∞ and    is sequence 

              diverging to – ∞ then (𝑎𝑛 + 𝑏n) need not be a divergent sequence. 
 

Solution. 
Let  = (𝑛) and (bn ) = (– 𝑛). 

Clearly  → 0 and ( bn) → – ∞. 

However (𝑎𝑛 +bn ) is the constant sequence 0 , 0 , 0 ,…. Which converges to 0. 
 
 

 

 
(a1/n) n 



Page 23 of 49 

 

 

 
 

Theorem: 3.1 

UNIT - III 
BEHAVIOUR OF MONOTONIC SEQUENCES 

i. A monotonic increasing sequence which is bounded above converges to its l.u.b. 
ii. A monotonic increasing sequence which is bounded above diverges to ∞. 
iii. A monotonic decreasing sequence which is bounded below converges to its g.l.b. 
iv. A monotonic decreasing sequence which is bounded below diverges to -∞. 

 

Proof: 
(i) Let  be a monotonic increasing sequence which is bounded above. 

Let k be the l.u.b of the sequence. 

Then an ≤ k for all n. 

Let ε>0 be given 

Therefore, k-ε <k and hence k-ε is not an upper bound of (an) 

Hence, there exists an  such that . 

Now, since  is monotonic increasing an> am for all n > m 

Hence an >k-ε for all n>m ............ (2) 

Therefore k – ε < an<k for all n >m.(by 1 and 2) 

Therefore |an – k|< ε for all n > m. 

Therefore  → k. 

 
(ii) Let  be a monotonic increasing sequence which is not bounded above. 

Let k > 0 be any real number. 

since  is not bounded, there exists m ε N such that am > k. 

Also an am for all n m. 

 

(an) →∞ 

Proof of (iii) is similar to that of (i) 

Proof of (iv) is similar to that of (ii) 

 
Note: 

The above theorem shows that a monotonic sequence either converges or diverges. Thus a 

Monotonic sequence cannot be an oscillating sequence. 

 
Solved Problems: 

1. Let an = 1+ . Show that exists and lies between 2 and 3. 

Solution: 

Clearly  is a monotonic increasing sequence 
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an = 1+1+ 

1+1+ 

Also, an = 1+ . 

= 1+  

= 1+ 2  

= 3 - < 3 

 
 

ts 
 
 

 

Hence the result. 

 
1. Show that the sequence  converges. 

Solution: 

Let an= 

By binomial theorem, 

< 3 (by problem 1) 

Therefore,  is bounded above. 

Also, 

an+1=1+1+ 
 

>1+1+ 

an+1 >an 

 is monotonic increasing. 

 is a convergent sequence. 

 
Theorem: 3.2 (Cauchy’s First Limit Theorem) 

If  

Proof: 

Case (i). 

 
is bounded above 

exis 

2< an <3 for all n. 
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Let Ɩ =0 

Let bn =  

Let ε>0 be given. 

Since  there exists m ϵ N  such that |an|<(1/2) ε for all n ................. (1) 

Now let n 

Then |bn|=  

 

= where k = 

< (by (1)) 

< (Since )… ..... (2) 

Now since (k/n) ,there exists n0ϵN such that k/n <(1/2)ε for all n 0 ............. (3) 

Let n1 = max{m, n0} 

Then |bn|<ε for all n 1 (using 2 and 3) 

Therefore (bn) 

Case (ii) 

Let Ɩ 

Since (an) 

 
(by case (i)) 

 
 
 
 
 
 

 
 
 

 

Theorem: 3.3 (Cesaro’s theorem) 

If   and (bn) then ( 

Proof: 

Let cn =  

Now put an = a + rn so that (rn) 

Then cn= 
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Since (rn) 

( 

( 

 

= 
 

Now, by Cauchy’s first limit theorem, 
 
 

Hence it is enough if we prove that ( 
 

Since, since (bn) , (bn) is a bounded sequence. 
Therefore, there exists a real number k>0 such that |bn| 

 
 
 

 
 

Hence the theorem. 
 

Theorem: 3.4 (Cauchy’s Second Limit Theorem) 

Let be a sequence of positive terms. Then provided the limit 

on the right hand side exists, whether finite or infinite. 
Proof: 

Case(i) =1, finite. 

Let ε>0 be any given real number. 

Then there exists mϵ N such that  

 

…… ……. …….. ……… 

…….. …… ………. ……… 

Multiplying these inequalities, we obtain 

 
 

 

 Where k1, k2 are some constants 

 
………..(1) 

Now choose 

Then 
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Then 

Hence 

 

Now, (Since ) 

There exists n1ϵ N such that  

 ……(2) 

Similarly, there exists n2ϵ N such that  

 …...(3) 

Let n0 = max {m, n1,n2}. 
 

 
 
 

Case (ii): 

 

Then 
 

Therefore, By case (i), ( 

Hence ( ) 

 

Theorem: 3. 5 

Let be any sequence and . If  
 
 

Theorem: 3.6 

Let be any sequence of positive terms and . If 

Problems: 

1. Show that  

Solution: 

Let an= 1/n 

We know that (an) Hence by Cauchy’s first limit theorem we get 
 

 

2. Show that  

Solution: 

Let an = 
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=  

= 
 

= e>1 

Hence  

 
Subsequence 

Definition. Let  be a sequence. Let (  ) be a strictly increasing sequence of natural 

numbers. Then ( ) is called a subsequence of (an ). 
 

Note. The terms of a subsequences occur in the same order in which they occur in the 
original sequence. 

Examples. 
 

1. ( a2n) is a subsequence of any sequence (an ). Note that in this example the interval 

between any two terms of the subsequence is the same, (i.e.,) 𝑛1=2 , 𝑛2=4 , 𝑛3=6 ,… 𝑛𝑘= 2k. 

2. (𝑎𝑛2 ) is a subsequence of any sequence (𝑎𝑛 ). Hence 𝑎𝑛1 = 𝑎1 , 𝑎𝑛2 = 𝑎4 , 𝑎𝑛3 = 𝑎9 ….. Here  

the interval 

between two successive terms of the subsequence goes on increasing as k becomes large. 
Thus the interval between various terms of a subsequence need not be regular. 
3. Any sequence ( an) is a subsequence of itself. 

 

Theorem: 3.7 

If a sequence (an ) converges to l , then every subsequence(𝑎𝑛𝑘 ) of (𝑎𝑛 ) also converges to l. 

Proof. 

Let 𝜖> 0 be given. 
Since (an ) → 𝑙 there exists m ∈𝑵 such that 
|an  −l |<𝜖 for all n ≥ m. .............(1) 
Now choose 𝑛𝑘0 ≥ m. 
Then k ≥ 𝑘0⇒𝑛𝑘 ≥ 𝑛𝑘0 ( ∵ (𝑛𝑘 ) is monotonic increasing) 
⇒𝑛𝑘 ≥ m. 
⇒ |𝑎𝑛𝑘 – 𝑙|<𝜖 (by 1) 
Thus |𝑎𝑛𝑘 – 𝑙|<𝜖 for all k ≥ 𝑘0. 
∴ (𝑎𝑛𝑘 ) → 𝑙 . 
Note 1. If a subsequence of a sequence converges, then the original sequence need not 
converge. 

 

Theorem :3.8 

If the subsequences (𝑎2𝑛−1) and (𝑎2n) of a sequence (𝑎𝑛) converge to the same limit 𝑙 
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then (𝑎𝑛 ) also converges to 𝑙 . 

Proof. 

Let 𝜖> 0 be given. Since (𝑎2𝑛−1) → 𝑙 there exists 𝑛1∈𝑵 such that|𝑎2𝑛−1− 𝑙 |<𝜖 for all 2𝑛 − 1 
≥𝑛1. 

Similarly there exists 𝑛2∈𝑵 such that |𝑎2𝑛 – 𝑙|<𝜖 for all 2𝑛 ≥ 𝑛2. 

Let m = max{𝑛1, 𝑛2}. 
Clearly |𝑎𝑛 – 𝑙|<𝜖 for all n ≥ m. 
∴ (𝑎𝑛 ) → 𝑙 . 

 
Note. The above result is true even if we have 𝑙 → ∞ 𝑜𝑟 − ∞. 

 
Definition. Let (an ) be a sequence. A natural number m is called a peak point of the 
sequence (an) 
if 𝑎𝑛<𝑎m for all n > m. 

 
Example. 

 

1. For the sequence ( 1/n), every natural number is a peak point and hence the sequence has 
infinite number of peak point. In general for a strictly monotonic decreasing sequence every 
natural number is a peak point. 
2. Consider the sequence 1 , ½,1/3, -1, -1,….. Here 1 , 2, 3 are the peak points of the 
sequence. 
3. The sequence 1 , 2 , 3 , …… has no peak point. In general a monotonic increasing sequence 
has no Peak point. 

 
Theorem :3.9 

Every sequence (an ) has no monotonic subsequence. 
Proof. 
Case (i) 
(an ) has infinite number of peak points. Let the peak points be 
𝑛1<𝑛2< …. <𝑛𝑘< …… 
Then 𝑎𝑛1>𝑎𝑛2> ….. >𝑎𝑛𝑘> …. 
∴( ) is a monotonic decreasing subsequence of (an). 

Case (ii) 

( an) has only a finite number of peak points or no peak points. 
Choose a natural number 𝑛1 such that there is no peak point greater than or equal to 𝑛1. 
Since 𝑛1 is not a peak point of (an ) , there exists 𝑛2>𝑛1 such that 𝑎𝑛2 ≥ 𝑎𝑛1. 
Again since 𝑛2 is not a peak point , there exist 𝑛3>𝑛2  such that 𝑎𝑛3  ≥ 𝑎𝑛2. 
Repeating this process we get a monotonic increasing subsequence (   ) of (an ). 

 
 

Theorem : 3.10 
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Every bounded sequences has a convergent subsequences. 

 
Proof. 
Let (an ) be a bounded sequence. Let (  ) be monotonic subsequence of ( an) . 

since (𝑎n ) is bounded, (  ) is also bounded. 

∴ (  ) is a bounded monotonic sequence and hence converges. 

 

∴ (  ) is a convergent subsequence of ( an). 
 

Cauchy sequences. 
Definition. A sequence (𝑎𝑛 ) is said to be a Cauchy sequence if given 𝜖> 0, there exists 𝑛0∈𝑵 
such that 
|𝑎𝑛 − 𝑎𝑚|<𝜖 for all n , m ≥ 𝑛0. 

Note. In the above definition the condition |𝑎𝑛 − 𝑎𝑚 |<𝜖 for all n , m ≥ 𝑛0 can be written in 
the 

following equivalent form, namely , |𝑎𝑛+𝑝 − 𝑎𝑛 |<𝜖 for all n ≥ 𝑛0 and for all positive integers p. 

Examples 

1. The sequence (1/n) is a Cauchy sequence. 

Proof. 

Let(an) =(1/n). 
Let 𝜖>0 be given. 
Now, |𝑎𝑛 − 𝑎𝑚|=|1/n -1/m| 

∴ If we choose 𝑛0 to be any positive integer greater than 1/ε , we get 
|𝑎𝑛  − 𝑎𝑚  | <  for all n, m ≥ 𝑛0. 
∴ (1/n) is a Cauchy sequence. 

 
2. The sequence ((−1 )n) is not a Cauchy sequence. 
Proof. 
Let ( an) = ((−1 )n) . 
∴|𝑎𝑛 − 𝑎𝑛+1 |= 2. 
∴If 𝝐<2 , we cannot find 𝑛0 such that |𝑎𝑛 − 𝑎𝑛+1 |<𝜖 for all n ≥𝑛0. 
∴((−1 )n) is not a Cauchy sequence. 
3. (n) is not a Cauchy sequence. 
Proof. 
Let (an ) = (n). 
∴ |𝑎𝑛 − 𝑎𝑚 |≥ 1 if n ≠ m. 
∴ If we choose 𝝐< 1 , we cannot find 𝑛0 such that |𝑎𝑛 − 𝑎𝑚 |<𝜖 for all n , m ≥ 𝑛0. 
∴ (n) is not a Cauchy sequence. 

 

Theorem :3.11 
Any convergent sequence is a Cauchy sequence. 
Proof. 
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Let (an ) → 𝑙. Then given 𝝐> 0, there exists 𝑛0∈𝑵 such that |an-l |<(1/2)ε for all n ≥ 𝑛0 

∴ |𝑎𝑛 − 𝑎𝑚 |= |𝑎𝑛 − 𝑙 + 𝑙 − 𝑎𝑚 | 
|𝑎𝑛 – 𝑙|+ |𝑙 − 𝑎𝑚 | 

< (1/2)ε +(1/2)=ε for all n , m ≥ 𝑛0. 
∴ (an ) is a Cauchy sequence. 

 
Theorem .3.12 
Any Cauchy sequence is a bounded sequence . 
Proof. 
Let (an ) be a Cauchy sequence. 
Let 𝜖> 0 be given. Then there exists 𝑛0∈𝑵 such that |𝑎𝑛 − 𝑎𝑚 |<𝜖 for all n , m ≥ 𝑛0. 
∴ |𝑎𝑛 |<|𝑎𝑛0 |+ԑ for n ≥ 𝑛0. 
Now , let k = max { |𝑎1 |, |𝑎2 |, …. |𝑎𝑛0 |+ ε } . 
Then |𝑎𝑛| ≤ k for all n. 
∴ ( an) is a bounded sequence. 

 
Theorem . 3.13 
Let (an ) be a Cauchy sequence. If ( an) has a subsequence ( 

 

) converging to 
 

, then (𝑎𝑛 ) 

→ 𝑙.   

Proof. 
Let 𝜖> 0 be given. Then there exists 𝑛0∈𝑵 such that 
|𝑎𝑛 − 𝑎𝑚 |<(1/2) 𝜖 for all n , m ≥ 𝑛0….(1) 

  

Also since ( )→ 𝑙, there exists 𝑘0∈𝑵 such that |  ……(2) 

Choose 𝑛𝑘  such that 𝑛𝑘>𝑛𝑘0 and 𝑛0 

Then |𝑎𝑛  − 𝑙 |= |𝑎𝑛 − 𝑎𝑛𝑘 + 𝑎𝑛𝑘  – 𝑙| 
≤ |𝑎𝑛 − 𝑎𝑛𝑘 |+ |𝑎𝑛𝑘 − 𝑙 | 
= (1/2) 𝜖+(1/2)ε 
=ε for all n ≥ 𝑛k. 

Hence ( an) → 𝑙. 
 

Theorem : 3.14 (Cauchy’s General Principle of Convergence 
Sequence)  

 A sequence (an ) in R is convergent iff it is a Cauchy 
sequence. 
 Proof. 
we have proved that any convergent sequence is a Cauchy sequence. 
Conversely, let (an )be a Cauchy sequence in R. 
∴ (an ) is a bounded sequence (Any Cauchy sequence is a bounded sequence) 
∴ There exist a subsequence (  ) of (an ) such that (  ) → 
∴ (an ) → 𝑙 ( by previous theorem ). 
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UNIT - IV 
SERIES 

 

Infinite series  
Definition. Let (an) = 𝑎1, 𝑎2 , ….. 𝑎𝑛 , ….. be a sequence of real numbers. Then the formal 
expression 𝑎1+𝑎2  + …..+ 𝑎𝑛  +….. is called an infinite series of real numbers and is denoted         
by  or . 
Let 𝑠1 = 𝑎1 ; 𝑠2 = 𝑎1 + 𝑎2 ; 𝑠3 = 𝑎1 + 𝑎2 + 𝑎3 ;…. 𝑠𝑛 = 𝑎1 + 𝑎2 + ⋯ + 𝑎𝑛 . 

 
Then ( sn) is called the sequence of partial sums of the given series  . 

 
The series  is said to converge, diverge or oscillate according as the sequence of partial 
sums (sn) converges, diverges or oscillates. 

If (sn ) → 𝑠, we say that the series  converges to the sum s. 
We note that the behavior of a series does not change if a finite number of terms are added 
or altered. 

Examples. 
Consider the series 1 + 1 + 1 + 1…… Here 𝑠𝑛= n. Clearly the sequence (sn) diverges to ∞. 
Hence the given series diverges to∞. 

2. Consider the geometric series 1 + r + 𝑟2+ …… +𝑟𝑛+…. 

Here, sn= 1 + r + 𝑟2+ …… +𝑟𝑛−1= . 

Case (i) 0 < r < 1. Then( 𝑟𝑛 )→0 
 

Therefore, (sn) ∴ The given series converges to the sum 1/(1-r) 

Case (ii) r > 1. 

Then 𝑠𝑛 =  

Also (rn)  when r > 1 

Hence the series diverges to  

Case (iii) r = 1. 

Then the series becomes 1 + 1 + …. 
(sn ) = (n). which diverges to ∞. 
Case (iv) r = −1. 
Then the series becomes 1 −1 + 1 −1 + …… 

∴ ( sn ) oscillates finitely. 
Hence the given series oscillates finitely. 
Case (v) : r < −1. 
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∴ (rn) oscillates infinitely 
∴ ( sn ) oscillates infinitely. 
Hence the given series oscillates infinitely. 

 
Note 1. Let  be a series of positive terms. Then (sn) is a monotonic increasing sequence. 
Hence (sn) converges or diverges to ∞ according as (sn) is bounded or unbounded. Hence the 
series converges or diverges to∞. Thus a series of positive terms cannot oscillate. 

 

Note 2. Let be a convergent series of positive terms converging to the sum s. Then s 

is the l. u. b. of (𝑠𝑛 ). Hence 𝑠𝑛 ≤ s for all n. 
Also given 𝜖> 0 there exists m ∈N such that s - 𝜖<𝑠𝑛 for all n ≥ m. 
Hence s - 𝜖<𝑠𝑛 ≤ s for all n ≤ m. 

 
Theorem : 4.1 
Let  be a convergent series converging to the sum s . 
Then lim𝑛→∞𝑎𝑛= 0 
Proof. 
lim𝑛→∞𝑎𝑛 = lim (𝑠𝑛 − 𝑠𝑛−1) 

𝑛→∞ 
 

= lim 𝑠𝑛 – lim 𝑠𝑛−1 

𝑛→∞ 𝑛→∞ 
 

= s – s = 0. 
 
 

Theorem . 4.2 

Let  converge to a and  converge to b . Then  converges to a 𝑏 and 

 converges to ka. 

Proof. 

Let 𝑠𝑛 = 𝑎1 +𝑎2 + …..+ 𝑎𝑛 and 𝑡𝑛 = 𝑏1 +𝑏2 + …..+ 𝑏𝑛 . Then (sn ) → 𝑎 and (tn ) → 𝑏. 
∴ ( ) b 
Also ( ) is the sequence of partial sums of  

 

∴ converges to b . 
Similarly 𝑘𝑎𝑛 converges to ka. 

 
 Theorem 4.3 (Cauchy’s general principle of convergence in Series) 
The series is convergent iff given 𝜖> 0 there exists 𝑛0∈N such that 
|𝑎𝑛+1+ 𝑎𝑛+2+ ⋯ + 𝑎𝑛+𝑝 | <𝜖 for all n ≥ 𝑛0 and for all positive integers p. 

 
Proof. 
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Let be a convergent series. Let 𝑠𝑛 = 𝑎1 +…..+ an. 
∴ (sn ) is a convergent sequence. 
∴ (sn ) is a Cauchy sequence 
∴ There exists 𝑛0∈N such that |𝑠𝑛+𝑝 − 𝑠𝑛 |<𝜖 for all n ≥ 𝑛0 and for all 𝑝∈N. 
∴ |𝑎𝑛+1 + 𝑎𝑛+2 + ⋯ + 𝑎𝑛+𝑝| <𝜖 for all n ≥ 𝑛0 and for all 𝑝∈N. 
Conversely if |𝑎𝑛+1 + 𝑎𝑛+2 + ⋯ + 𝑎𝑛+𝑝| <𝜖 for all n ≥ 𝑛0 and for all 𝑝∈N then (𝑠n) is a Cauchy 
sequence in R and hence (𝑠𝑛) is convergent. 
∴ The given series converge. 

 
Solved Problems. 

1.  Apply  Cauchy’s  general  principle  of  convergence  to  show  that  the  series       not 

convergent. 

Solution. Let sn =1+ 
 

Suppose the series  is convergent. 

 
∴ By Cauchy’s general principle of convergence, given 𝜖> 0 there exists 𝑚∈N such that 

 
|𝑠𝑛+𝑝 − 𝑠𝑛 |<𝜖 for all n ≥ 𝑚 and for all 𝑝∈N. 

 

for all n ≥ 𝑚 and for all 𝑝∈N. 

<𝜖 for all n ≥ 𝑚 and for all 𝑝∈N. 

In particular if we take n = 𝑚 and p = 𝑚 we obtain 

 

-∴ <𝜖 which is a contradiction since 𝜖> 0 is arbitrary. 

∴ The given series is not convergent. 
 

Comparison test 
Theorem 4.4 (Comparison test) 

i). Let  𝑐𝑛  be  a  convergent  series  of positive terms. Let  an be another series of positive 

terms. If there exists 𝑚∈N such that 𝑎𝑛 ≤ 𝑐𝑛 for all n ≥ m, then 𝑎𝑛 is also convergent. 

ii). Let n     be a divergent  series  of positive terms. Let an be another series of positive 

terms. If there exists 𝑚∈N such that 𝑎𝑛 ≤ 𝑑𝑛 for all n ≥m, then an is also divergent. 
Proof: 
(i) Since the convergence or divergence of a series is not altered by the removal of a finite 
number 
of terms we may assume without loss of generality that 𝑎𝑛 ≤ 𝑐𝑛for all n. 

Let 𝑠𝑛 = 𝑐1 +𝑐2 + …..+ 𝑐𝑛 and 𝑡𝑛 = 𝑎1 +𝑎2 + …..+ 𝑎𝑛 . 
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Since 𝑎𝑛 ≤ 𝑐𝑛 we have 𝑡𝑛 ≤ 𝑠𝑛. 
Now, Since 𝑐𝑛 is convergent, (sn ) is a convergent sequence. 
∴  is a bounded sequence. 
∴ There exists a real positive number k such that 𝑠𝑛 ≤ k for all n. 
∴𝑡𝑛 ≤ k for all n 
Hence   is bounded above. 

Also is a monotonic increasing sequence. 
∴ converges 
∴   𝑎𝑛 converges. 

 

(ii) Let 𝑑𝑛 diverge and 𝑎𝑛 ≥ 𝑑𝑛 for all n. 
∴𝑡𝑛 ≥ 𝑠𝑛 . 
Now, is diverges to ∞. 
∴ is not bounded above. 
∴ is not bounded above. 
Further is monotonic increasing and hence   diverges to ∞. 
∴ 𝑎𝑛 diverges to ∞. 

 
Theorem :4.5 

(i) If  𝑐𝑛converges and if exists and is finite then 𝑎 also converges. 

(ii) If 𝑑𝑛diverges and if exists and is greater than zero then 𝑎n diverges. 

Proof 

(i) .Let =k 

Let > 0 be given. Then there exists 𝑛∈N such that < k + 𝜖 for all n ≥n1. 

∴𝑎𝑛< (k + 𝜖) 𝑐𝑛 for all n ≥ 𝑛1. 
Also since 𝑐𝑛 is a convergent series,  (𝑘 + 𝜖) 𝑐𝑛 is also convergent series. 
∴ By comparison test 𝑎𝑛 is convergent. 

 
(ii)Let =k > 0 

Choose 𝜖 = . Then there exists 𝑛1∈N such that k − < < k 𝑘 for all n ≥ 𝑛1. 

for all n ≥ 𝑛1 

∴ for all n ≥ 𝑛1 

 

Since 𝑑𝑛 is a divergent series, dn is also divergent series. 

∴ By comparison test, 𝑎𝑛 diverges. 
 

Theorem: 4.6 

i) Let n be a convergent series of positive terms. Let an be another series of positive 

terms. If there exists 𝑚∈N such that for all n≥ m, then 𝑎𝑛 is convergent. 
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ii) Let 𝑑𝑛 be a divergent series of positive terms. Let 𝑎𝑛 be another series of 
positive terms. If there exists 𝑚∈N such that 

 

for all n ≥ m, then 𝑎𝑛 is divergent. 

Proof.(i) 

∴( is a monotonic decreasing sequence. 

∴
 ≤ k for all n where k = ∴𝑎𝑛 ≤ 𝑘𝑐𝑛 for all 𝑛∈N. 

Now, 𝑐𝑛 is convergent. Hence 𝑘𝑐𝑛 is also a convergent series of positive terms. 
∴ an is also convergent 
(ii)Proof is similar to that of (i). 

 
Theorem .:4.7 

The harmonic series   converges if p > 1 and if p ≤ 1. 

Proof. 

Case (i) Let p=1. 

Then the series becomes Σ(1/n) which diverges. 
Case (ii) Let p < 1. 

Then np < n for all n. 

 for all n 

∴ By comparison test   diverges. 

Case (iii) Let p > 1. 

Let sn = 1 + 
𝑝 

 
 

<1 + 

=1+ 
 

 
Now, since p > 1, p-1> 0 

Hence 

Then𝑆2𝑛+1−1=1+ 

=1+ 
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Therefore    = k (say) 
 

Now let n be any positive integer. Choose 𝑚∈N such that n ≤ 2𝑚+1 − 1. Since (sn) is a 

monotonic increasing sequence , 𝑠𝑛 ≤ 𝑆2𝑚 +1 −1. 

Hence 𝑠𝑛< k for all n. 
Thus is a monotonic increasing sequence and is bounded above. 
∴ is convergent. 

∴ is convergent. 
 

Solved problems. 

1. Discuss the convergence of the series  

Solution. 

<  

Also is convergent 

∴ By comparison test,   is convergent. 

2. Discuss the convergence of the series . 
 

Solution. 
Let 𝑎𝑛 = (log log n)−logn 

 

∴𝑎𝑛 = 𝑛−𝜃𝑛 where 𝜃𝑛 = log (log log n). 
 

Since = ∞ , there exists 𝑚∈N such that 𝜃𝑛 ≥ 2 for all n ≥ m. 

∴𝑛−θ ≤ 𝑛−2 for all n ≥ m. 
∴𝑎𝑛 ≤ 𝑛−2 for all n ≥ m. 
Also Σ𝑛−2 is convergent. 
∴ By comparison test the given series is convergent. 

Show that  

Solution. 

Let 𝑎𝑛=  

Clearly 𝑎𝑛<              Also Σ is convergent 

∴ by comparison test, the given series converges 

Now, an = (by partial fraction) 
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∴𝑠𝑛 = 𝑎1 +𝑎2 + …..+ 𝑎𝑛 

 

 
=  

=  

 

Hence  

 
Theorem 4.8 (Kummer’s test) 

Let Σ𝑎𝑛be a given series of positive terms and    be a series of a positive terms diverging 

to ∞. Then 

(i) Σ𝑎𝑛converges if and 

(ii) Σ𝑎𝑛  diverges if . 

Proof. 

(i) Let = 𝑙> 0. 

We distinguish two cases. 

Case (i) 𝑙 is finite. 

Then given 𝜖> 0, there exists 𝑚∈N such that 

𝑙 – 𝜖< <𝑙 + 𝜖 for all n ≥ m 

∴𝑑𝑛𝑎𝑛− 𝑑𝑛+1𝑎𝑛+1> (𝑙 – 𝜖) 𝑎𝑛+1for all n ≥ m. 

 

Taking 𝜖 =(1/2) , we get dnan -𝑑𝑛+1𝑎𝑛+1> (1/2)𝑙𝑎𝑛+1for all n ≥ m. 

Now , let n ≥ m 

∴𝑑m 𝑎m− 𝑑m+1𝑎m+1> (1/2) 𝑙am+1 

𝑑m+1𝑎m+1− 𝑑m+2am+2 > (1/2) 𝑙am+2 

…… …. ……. ………… …………….. 

………………………………………………………… 

𝑑n-1𝑎n-1– 𝑑𝑛𝑎𝑛> (1/2) 𝑙an 

Adding, we get 

dm am – dn an> (1/2) 𝑙 (am+1 + ….+ an) 
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dm am – dn  an> (1/2) 𝑙 (sn - sm) where sn = a1 + a2 +…..+ an 

dm am> (1/2) 𝑙 (sn - sm) 
 

sn < which is independent of n 

∴ The sequence (sn) of partial sums is bounded. 
∴𝑎𝑛 is convergent. 
Case (ii) 𝑙 = ∞. 

Then given real number k > 0 there exists a positive integer m such that  

for all n ≥m. 

∴𝑑𝑛𝑎𝑛 − 𝑑𝑛+1𝑎𝑛+1 > 𝑘𝑎𝑛+1 for all n ≥ m. 

Now, let n ≥ m. Writing the above inequality for m, m+1,…..,(n – 1) and adding we get 
𝑑𝑚𝑎𝑚 − 𝑑𝑛𝑎𝑛>𝑘 (𝑎𝑚+1 + ⋯ +an) 
= k (𝑠𝑛 −sm ). 
∴𝑑𝑚𝑎𝑚>𝑘 (𝑠𝑛 −𝑠𝑚 ). 

∴sn< 

∴ The sequence (sn) is bounded and hence Σ𝑎𝑛 is convergent. 
 

(𝑖𝑖) 
 

Suppose 𝑙 is finite. 

 

Choose 𝜖> 0 such that 𝑙 + 𝜖< 0. Then there exists 𝑚∈N such that 

𝑙 + 𝜖 < < 𝑙+ 𝜖< 0 for all n ≥ m. 

∴𝑑𝑛𝑎𝑛 <𝑑𝑛+1𝑎𝑛+1 for all n ≥ m. 
Now let n ≥ m 
∴𝑑𝑚𝑎𝑚<𝑑𝑚+1𝑎𝑚+1 

…………………………………. 
…………………………………. 

 
𝑑𝑛−1𝑎𝑛−1<𝑑𝑛𝑎𝑛 

∴ 𝑑𝑚𝑎𝑚<𝑑𝑛𝑎𝑛. 

∴ 𝑎𝑛> Also by hypothesis  is divergent 

Hence is divergent. 

∴ By comparison test Σ𝑎𝑛 is divergent. 
The proof is similar if 𝑙 = −∞. 

 
Corollary 1.(D’ Alembert’s ratio test) 
Let Σ𝑎𝑛be a series of positive terms. Then Σ𝑎n converges if >1 and diverges 
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Proof. 

The series 1 + 1 + 1 + …. is divergent 
∴ We can put 𝑑𝑛 = 1 in Kummer’s test. 

 
Then 

Hence Σ𝑎𝑛converges if  > 0 

Therefore Σ𝑎𝑛converges if > 1 

Similarly Σ𝑎𝑛 diverges if 

 

Corollary 2. (Raabe’s test) 

Let Σ𝑎n   be a series of positive terms . Then Σ𝑎n converges if > 1 and 

diverges  if < 1. 

Proof. The series is divergent. 

∴ We can put 𝑑𝑛 = 𝑛 in Kummer’s test. 

Then 

=n 

Σ𝑎𝑛converges if > 1 and diverges if < 1 
 

 

Theorem: 4.9 (Gauss’s test) 

Let  Σ𝑎𝑛be a  series  of  positive terms such that  where p>1 and (rn) is a 

bounded 

sequence. Then the series Σ𝑎𝑛converges if β> 1 and diverges if β  1. 

Proof: 

 , p>1 

n
 

Now, since p>1, 

Also (rn) is a bounded sequence. 

Hence 
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By Raabes’s test Σ𝑎𝑛converges if β> 1 and Σ𝑎𝑛diverges if β< 1. 

If β = 1, Raabes’s test fails. In this case we apply Kummer’s test by taking dn = n log n 

Now,  

= - (n+1)log (1+ 
 

= - log 
 

Now, by hypothesis (rn) is abounded sequence and ( 

) 

 
Hence by Kummer’s test Σ𝑎𝑛 diverges 

 
Solved problems. 

1. Test the convergence of the series 

Solution: 

Let an =  

= 
 

Therefore by D’ Alembert’s ratio test Σ𝑎𝑛 is convergent. 
 

Theorem 4.10 (Cauchy’s root test) 

Let Σ𝑎𝑛 be a series of positive terms. Then Σ𝑎𝑛 is convergent if lim𝑛→∞𝑎𝑛 
1/n< 1 and divergent 

if lim𝑛→∞𝑎𝑛 
1/n>1. 

Proof. 

Case(i) let = 𝑙< 1. 

Choose 𝜖> 0 such that 𝑙 + 𝜖< 1. 

Then there exists 𝑚∈ N such that 𝑎𝑛 1/n< 𝑙 + 𝜖 for all n ≥ m 

∴ < (𝑙 + 𝜖) 𝑛 for all n ≥ m. 
Now since 𝑙 + 𝜖< 1 , Σ(𝑙 + 𝜖) 𝑛 is convergent. 
∴ By comparison test Σ𝑎𝑛 is convergent. 
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( 

Let an = 

Case (ii) Let lim𝑛→∞𝑎𝑛 
1/n = 𝑙> 1. 

Choose 𝜖> 0 such that 𝜖 >1. 

Then there exists m ∈N such that 𝑎𝑛 1/n>𝑙 - 𝜖 for all n ≥ m 
∴ an >(𝑙 − 𝜖) for all n ≥ m. 
Now, since 𝑙 − 𝜖>1, Σ (𝑙 − 𝜖) 𝑛 is divergent 
∴ By comparison test, Σ𝑎𝑛 is divergent. 

 

Problems: 

1. Test the convergence of  

Solution: 

 

by Cauchy’s root test converges. 

2. Prove that the series converges if 0< x < 1 and diverges if x > 1. 
 

Solution: 

Let an = 
𝑎𝑛 1/n  = 

 

 
)1/n 

lim𝑛→∞ 𝑎𝑛 
1/n = x 

Hence by Cauchy’s root test the given series converges if 0< x < 1 and diverges if x > 1. 
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UNIT - V 
ALTERNATIVE SERIES 

 

Definition: A series whose terms are alternatively positive and negative is called an 
alternating series. 
Thus an alternating series is of the form 
a1 – a2 + a3  –a4 + .................. = ∑ (- 1)n+1 an where an> 0 for all n. 
For example 

i) 1 - + - + …………….= ∑ (- 1)n+1 is an alternating series. 

ii) 2 - + - + …………….= ∑ (- 1)n+1 is an alternating series. 

We now prove a test for convergence of an alternating series. 

 

Theorem :5.1( Leibnitz’s test ) 
Let ∑ (- 1)n+1 an be an alternating series whose terms an satisfy the following conditions 
i) (an) is a monotonic decreasing sequence. 
ii) n = 0. 
Then the given alternating series converges. 
Proof: 
Let (sn) denote the sequence of partial sums of the given series. 
Then s2n  = a1 – a2 + a3 –a4 + .................. + a 2n – 1 – a2n 

s2n+2 = s2n + a2n +1 - a2n+2 

Therefore, s2n+2 - s2n = (a2n +1 - a2n+2 ) ≥ 0 ( by (i)). 
Therefore, s2n+2 ≥ s2n . 
Therefore, (s2n) is a monotonic increasing sequence. 
Also, s2n = a1 – (a2 - a3) – (a4 – a5) - ……………… - (a 2n – 2 - a2n – 1) – a2n 

≤ a1 ( by (i)). 
Therefore, (s2n) is bounded above. 
Therefore, (s2n) is a convergent sequence. 

Let ( s2n)  s. 
Now,  s2n+1 =  s2n  + a2n +1. 

Therefore,   s2n+1    = s2n    +  a2n +1= s + 0 = s ( by (i)) 

Therefore,  ( s2n+1)  s. 
Thus the subsequences (s2n) and ( s2n+1) converges to the same limits. 
Therefore,  ( sn)   s ( by theorem 3.29). 
Therefore, The given series converges. 

 

Problem : 1  Show that the series  1 -  +  -  + .............. converges. 

Solution : The given series is ∑ (- 1)n+1 an    where an  =  . Clearly an > an+1 for all n and hence 

(an) is monotonic decreasing. 

Also an  =    = 0. 

By Leibnitz’s test the given series converges. 
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Problem : 2  Show that the series  ∑  converges. 

Solution :  Let   an =  . 

Clearly (an) 0 as n . 

Also     for all n 

By Leibnitz’s test the given series converges. 
 
 

Absolute convergence 
Definition  :  A  series  ∑  anis  said  to  be  absolutely  convergent  if  the  series  ∑     is 
convergent. 

Example  :  The  series  ∑    is  absolutely  convergent,  for ∑    =  ∑    which is 

convergent. 
 

Theorem: 5.2 
Any absolutely convergent series is convergent. 
Proof : 
Let ∑ anbe absolutely convergent. 

∑   is convergent. 
Let  sn= a1 + a2 + a3  + a4 + …………… + an  and  tn=  +  + …………… +  
By hypothesis (tn) is convergent and hence is a Cauchy sequence 
Hence given ε > 0, there exist n1∈N such that < ε for all n, m > n1 …………………… 
(1) 
Now let m > n. 
Then = 
≤ + + 
= < ε for all n, m > n1 (by (i)). 

(sn) is a Cauchy sequence in R and hence is convergent 
∑ an is a convergent series. 

 
Definition : A series ∑ an is said to be conditionally convergent if it is convergent but not 
absolutely convergent. 

Example : The series ∑  is conditionally convergent. 

Theorem: 5.3 
In a absolutely convergent series, the series formed by its positive terms alone is convergent 
and the series formed by its negative terms alone is convergent and conversely. 

 

Proof : 
Let ∑ anbe the given absolutely convergent series. 

 

We define pn =  and qn =  

(i.e) pn is a positive terms of the given series and qn is the modulus of a negative term. 

 

…………… + 
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= 

∑ pn is the series formed with the positive terms of the given series and qnis the series 
formed with the moduli of the negative terms of the given series. 
Clearly pn  ≤  and qn ≤|an| for all n. 
Since the given  series  is absolutely  convergent, ∑    is a convergent series of positive 
terms Hence by comparison test ∑ pn and ∑ qn are convergent. 
Conversely ∑ pn and ∑ qn are converge to p and q respectively. We claim that ∑ an is 
absolutely convergent. 
We have = pn+ qn 

∑ = ∑ (pn+ qn) 
= ∑ pn+ ∑ qn 

= p + q. 
∑ an is absolutely convergent 

 
Theorem: 5.4 
If ∑ anis an absolutely convergent series and (bn) is a bounded sequence, then the series ∑ 
anbn is an absolutely convergent series. 
Proof : 
since (bn) is a bounded series , there exist a real number k > o such that  ≤ k for all n. 

 

  

Since ∑  an is absolutely convergent ∑  is convergent. 
∑ k  is convergent. 

By comparison test , ∑  is convergent. 
∑ an bn is an absolutely convergent . 

 

Problem 1 : Test the convergence of ∑ 

Solution : We have 

 

≤ 1) 

By comparison test the series is a absolutely convergent. 
 

Tests For Convergence of Series Of Arbitrary Terms 
Theorem: 5.5 

Let   be a bounded sequence and   be a monotonic decreasing bounded sequence. 
Then the series  is absolutely convergent. 

 

Proof: 
Since  and   are bounded sequences there exists a real number k> 0 such that |an| 
k and 
|bn|  for all n. 

 
Let denote the partial sum of the series  

 
 
 

 

=  

for all n. ≤ k 

 

( since, 
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k  
 

=  k   ) 
≤k (|b1| +|bn+1|) 

k ( k + k) =2k2 
is a bounded sequence. 

is convergent. 
Hence is absolutely convergent. 

 
 

Theorem: 5.6 (Dirichlet’s test) 
Let Σan be a series whose sequence of partial sums (sn) is bounded. Let (bn) be a monotonic 
decreasing sequence converging to 0. Then the series Σanbn converges. 

 
Proof: 
Let tn denote the partial sum of the series Σanbn 

 
 
 

(Since = ar) 
 

= ……………..(1) 
 

Since is   bounded   and         is a monotonic decreasing bounded sequence 
 

 

is a convergent sequence. 

Also since   is bounded and  
From (1) it follows that   is convergent. 
Hence Σanbn converges. 

 

Theorem:5.7 (Abel’s test) 
Let Σ an be a convergent series. Let (bn) be a bounded monotonic sequence. Then Σ anbn is 
convergent. 
Proof: 

 
 
 
 
 

 

…………(1) 

Clearly (cn) is a monotonic decreasing sequence converging to 0. Also since Σ an is a 
convergent series its sequence of partial sums is bounded. 

by Dirichlet’s test Σ an cn is convergent. 

 
 

= s1 b1 + 

Since (bn) be a bounded monotonic sequence, (bn) b(say) 

Let 

…… 
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is a bounded sequence. 

Hence by Dirichlet’s test 

= 

Also Σ an is convergent. 
Σ b an is convergent. 

Hence by (1) Σ anbn is convergent. 
 

Problems: 

1. Show that convergence of Σan implies the convergence of  

Solution: 
Let Σan be convergent 
The sequence (1/n) is a bounded monotonic sequence. 

 

Hence by Abel’s test  is convergent.2. Prove that  is convergent. 

Solution: 
Let an = sin n and bn= 1/log n. 
Clearly (bn) is a monotonic decreasing sequence converging to 0. 
sn  = sin 2 + sin 3 + ........ + sin (n+1) 

 
 
 
 

is convergent 

Exercise: 

1. Show that the series converges for all values of  and converges if  is not 

a 

multiple of 2 
 

MULTIPLICATION OF SERIES 
Definition : Let ∑ an and ∑ bn be two series. 

Let c1 = a1b1 

c2 = a1b2 + a2b1 

c3 = a1b3 + a2b2 + a3b1 

……………………………………………… 

……………………………………………… 

……………………………………………… 

cn = a1bn + a2bn-1 + a3bn-2 + ……………………+ anb1. 

……………………………………………….. 

………………………………………………… 

……………………………… 
Then the series ∑ cn is called the Cauchy product of ∑ an and ∑ bn. 

 
Example : 

 
Consider the series 

 

We take the Cauchy product of the series with itself. 
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Then cn = a1bn + a2bn-1 + a3bn-2 + ……………………+ anb1. 

= (-1) n-1 

= n = 1. 

 

Let an = = bn. 
 

 
 1 for all n N. 

The Cauchy product ∑ cn is divergent. 

However the given series converges ( by Leibnitz’s test ). 

Thus the Cauchy product of two convergent series need not converges. 
 

Theorem: 5.8 (Abel’s theorem). 
If   ∑ an and ∑bn converge to a and b respectively and if the Cauchy product ∑ cn converges 
to c, then c = ab. 
Proof: 
Let   An = a1+a2+… ........... + an. 
Bn = b1+b2+… ........... + bn. 
Cn = c1+c2+… ........... +cn. 

 

Cn   =  a1b1 + (a1b2  + a2b1) + ………………………… + (a1bn+ a2bn-1+… ....... + anb1) 
=  a1(b1+ b2+…………+ bn)  +  a2(b1+ b2+…………+ bn-1) + ...................... +anb1 

= a1Bn + a2Bn-1 +……………………………+anB1 ----------------------------------------- (1) 
From (1) C1 = a1B1 

C2 = a1B1 + a2B1 

…………………… 
…………………… 
Cn   = a1Bn + a2Bn-1 +… ........................... +anB1 

C1 + C2 + ........... +Cn 

= a1B1 +( a1B1 + a2B1 )+…………………………………+( a1B1 + a2B2 +… .......... +anBn ) 
= B1 (a1+a2+…………… + an) + B2 (a1+a2+…………… + an-1 )+… ............. + Bna1 

= An  B1 + An-1 B2 +… ........................ + A1 Bn. 
By hypothesis ∑ an converges to a and ∑ bn converges to b. 

(An)  a and   (Bn)  b . 
 

Hence by Cesaro’s theorem, 

 

  ab. 

i.e.,   ab. 

Also by hypothesis ∑ cn converges to c 
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+ 

 

(Cn) c. 
Hence by Cauchy’s first limit theorem, 

 

c 
 
 

Theorem 5.9 (Merten’s Theorem) 
If the series ∑ an and  ∑ bn  converge to the sums a and b respectively and if  one of the  
series, say, ∑ an is absolutely convergent, then the Cauchy product ∑ Cn  converges to the  
sum ab. 

 
Proof : 
Let   An  = a1+a2+… ........... + an. 
Bn   = b1+b2+… ........... + bn. 
Cn  = c1+c2+… ........... +cn. 

   = + ………………… 
and  ∑ =  ,  so that ( . 
Now , let Bn = b + rn. 

 
Since, (Bn)  b, (rn)  as  n . 

 
Now ,  Cn   =  a1Bn + a2Bn-1 +… ........................... +anB1 

= a1 (b + rn) + a2 (b + rn-1) + ................ + an (b + r1) 
= (a1+………… + an )b + (a1rn + .............. + anr1) 
= An b + (a1rn + .............. + anr1) 
=  An b + Rn where Rn  = a1rn + .............. + anr1. 

 

Since, (An)   a,   (An  b)  ab. 
To prove that (Cn)  a b, it is enough if we prove that (Rn)  0 

Let  >  0  be  given.  Since  (rn)    0,  there  exist  n1    N  such  that  <   for  all  n    n1. 
………………(1) Also since the sequence (rn) is convergent, it is a bounded sequences and 
hence there  exists k  0 such that   <  for all n. …………………………… 

(2) 
Further since ( ) ,   ( ) is a Cauchy sequence. 

There exists n2 N such that <  for all  n , m  n2 ............................ (3) 
Let p = max {n1,n2}, 
Let n 2p. 

 

Then  Rn = a1rn + a2rn-1+…………+ aprn - p+1 + ap+1rn-p +……+ anr1. 

   { + + ……………… + } + 

{ + …………+ } 
 

Now n 2p 
+ 

=>n , n-1, ………, (n – p- 1) n1. 
+ ……………… + 

< ( + ………………… + ) (by 1). 

. 
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( - ) k 

Let 

= 
 

< (since (     is a monotonic increasing sequence converging to  

………………… (5) 

Also, + …………+  

(  k 

(by 2) 

< 
Using (5) and (6) in (4) we get 

<  ( for all n  2p. 
(Rn) 0. 
(cn) converges to a b. 

∑ Cn converges to a b. 
 

Power Series 
Definition: 
A  series of the form    is called a power 
series in x. The 
number  are called the coefficients of the power series. 

 
Example: 

Consider the geometric series Here  =1 for all n. This series converges absolutely 

if , 

diverges if x , oscillates finitely if x = -1 and oscillates infinitely if x < -1 
 

Theorem: 5.10 

Let be  the  given  power  series.  Let  α  =  and  let     .Then 

converges  absolutely if . If  the series is not convergent. 
Proof: 

 
 
 
 

 

Hence By Cauchy’s root test the series converges if  

i.e) if  
Now suppose   .Choose a real number such that  

Hence by definition of upper limit, for infinite number of values of n we have 
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 for finite number of values of n. 
Hence the series cannot converge. 

 

Definition: 

The number given in the above theorem is called the radius of convergence 

of the power series 
Example: 
1. For the geometric series  ,the radius of convergence R =1 

2. Consider the exponential series  

 
 

 

Hence the series converges for all values of x. 

Here 


